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The author examines the process of flow from one or more supersonic
nozzles into a chamber with a diffuser or a wide cylindrical tube.
The characteristic regimes are established. An analysis of the experi-
mental data shows that the chamber pressure is at a minimum when
critical flow conditions exist at the diffuser outlet.

In certain equipment, such as wind tunnels, super-
gsonic gas ejectors, etc., a supersonic jet ejects air
from a certain closed space thereby creating reduced
pressure. At the outlet from these systems there is
usually a supersonic diffuser or, more commonly, a
cylindrical exhaust channel. When air is not supplied
from the outside, apart from the nozzle (i. e., when
the ejection coefficient is zero), a theoretical analysis
is difficult, since it is necessary to take into account
the viscosity on the initial section of the jet and con-
sider the process of reconstruction of the free jet
into a channel flow.

To establish the corresponding physical flow model,
we carried out a large number of experiments [1] on
models of the type illustrated in Fig. 1. The experi-
ments were performed with cold air (k = 1.41).

The immediate object of the experiments was to
determine the effect of the geometric parameters -F—‘e,
7, L, and the M, number on the dependence of the
chamber pressure P, on the pressure upstream from
the nozzle Py and ascertain the pressure reduction
mechanism.

A typical result is presented in Fig. 1, where P,
is plotted against P,. These curves take different
forms depending on the length of the channel I. At
1< Z_opt (curve A on the graph), as Pjincreases the
chamber pressure falls slightly (branch I of the curve)
until Py reaches a certain value. Then, any small in-
crease in Py results in a nonsteady process of varia-
tion of P, (i.e., P falls continuously at Py = const),
which continues until (branch II of the curve) P,
reaches a minimum value lying on the branch of the
curve characterizing the njj, regime corresponding
to the condition Po/Pj = const (branch III of the curve).
Then the pressure in the chamber becomes propor-
tional to the pressure upstream from the nozzle.

At l—opt (Fig. 1, curve B), the pressure P, falls
montonically as Pg increases, reaching a minimum
value (Po)min, and the njjy, regime sets in. The
quantity nj;,, does not depend on the length of the out-

let channel I. The maximum vacuum also corresponds
to I = lopt; moreover, when I =1, the minimum of

P, is reached at the least (as compared with [ </

opt)
pressure upstream from the nozzle Pgy,.
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Fig. 1. Chamber pressure P, atm abs., as a function

of the pressure upstream from the nozzle Py atm abs.,

at M, = 2.45, f‘e =16, L = 4.0 (open circles—I = 6,

golid circles—I = 2): 1) nozzle, 2) chamber, 3) outlet
channel.

As a result of an analysis of the experimental data
we established the physical picture of the processes
in the chamber when I <l,,;. In this case branch I
of the Pe = f(Py) curve corresponds to small values
of n. Moreover, in section b the jet has transverse
dimensions much smaller than the clear cross section
of the outlet channel, and there is an annular gap be-
tween the outer edge of the jet boundary layer and the
channel walls.

Owing to turbulent transfer the jet passing through
the chamber and the outlet channel picks up and en-
trains a certain mass of air. In the course of time (at
Py = const) the pressure in the chamber should fall as
a result of mass entrainment, but, as experiments
show, it does not depend on time at constant P, This
indicates the presence of a constant mass influx through
the annular gap between the channel walls and the jet
to compensate for the additional mass of the jet. Direct
experimental investigation confirms the presence of
this counterflow, the pressure in it falling from the
ambient pressure to the pressure level in the chamber.

As Py increases, so does n, and hence the cross
section of the jet increases. The annular gap is re-
duced and the pressure falls, while the velocity in the
counterflow ve increases, since at each instant of
time the flow rate in the reverse stream mustbe equal
to the additional mass of the jet. This continues until
the velocity of the counterflow in section b becomes
equal to the critical velocity ve = agp. Further in-
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crease in Py leads to a decrease in the area of the
annular gap, but, obviously, the velocity Ve cannot
increase any more., Starting from this instant, the
flow rate in the reverse direction can no longer com-
pensate the additional mass of the jet, and a nonsteady
process of removal of mass from the chamber ensues.

The chamber pressure falls at constant Py. This corre-

sponds to branch II of the curve in Fig. 1. This ques-
tion was examined in detail in [2].

The transient process ends when the outer edge of
the jet begins to touch the walls of the outlet channel.

A further increase in P leads to a reorganization
of the flow field in the outlet channel until the stream-
line in the jet boundary layer on which the velocity is
equal to the critical value touches the edge of the chan-
nel inlet. This marks the beginning of the njj, regime.

This argument, applicable to the situation when the
outlet channel is not sufficiently long (I < Z_opt) is illus=-
trated in Fig. 1 by the velocity fields at the exit sec-
tion of the outlet channel.

It is clear from Fig. 1 that on branch I of curve A
there are two flows in the exit section: the jet proper
and a surrounding annular counterjet with velocity v.

Atl = Z_opt’ the velocity fields corresponding to
Py > Pyy are uniform. Sharp nonuniformity develops
only at Py > Py,

fil= l_opt’ the jet almost immediately touches the
edge of the channel walls; branch II of the curve is
very small and is notdetected experimentally, although
it undoubtedly exists.

The processes are all similar in character when
the chamber and outlet channel are replaced simply
by a wide tube or when several nozzles are installed
in any order in the bottom of a wide tube.

Obviously, then, the characteristic quantities are
as follows: the minimum chamber pressure (Po)mins
the total pressure upstream from the nozzle Py, at
which (P¢)min is reached, and the ratio njjy. More-
over, there is a certain optimal length of the outlet
channel [,; which ensures maximum pressure reduc-
tion at the least pressure upstream from the nozzle.
The quantity l_opt depends only on the M, number at
the nozzle exit and can be found from the empirical
formula

[ =178 M,.

A generalization of the experimental data has shown

that when M, = const the pressure upstream from the
nozzle at which the chamber pressure is a minimum
{provided that [ > l_opt) is directly proportional to _t_he
relative clear cross section of the outlet channel Fe.
An example of this generalization is shown in Fig. 2,
where, asmay seen from the graphs, the proportional-
ity factor depends on M,. Thus, we have experimentally
deomonstrated the existence of the condition

Ui

n

= const when M, = const. (1)

i

e

The ratio Pyy/Fg is shown as a function of M in
Fig. 3, from which it follows that at a given M, the
length of the chamber L has almostno effect on Pom/
/Fg (at any rate within fairly wide limits, L = 0-7).
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Fig. 2. Pressure Pyy, atm abs., at
1= lopt as a function of_the area of

the outlet channel FeatL =4:1)M, =
=1.0; 2) 2.02; 3) 2.45; 4) 2.85;5)3.37.
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Fig. 3. The ratio Pyy/Fe as a function
of the Mach number at the nozzle exit
M, for different models (curve—calcu-
lations based on Eq. (4); star—group
of four nozzles): 1) L = 1.5; 2) 4.0;

3) 7.0.

Essentially, f’om is a quantity directly proportional
to the flow rate through the nozzle (in supercritical
regimes). Consequently, (1) can be represented as
follows:

Gy _ ap,v, = const, 2)

€
since the flow rate through the nozzle Gy is equal to
the flow rate through the outlet channel Gg. Here, a
is a coefficient depending on the gas constant, the
adiabatic exponent, and the stagnation temperature
upstream from the nozzle. If is easily determined
from known relations.

A variety of conditions may exist in the chamber
and the outlet channel. At small F the flow from the
nozzle will be characterized by overexpansion and
the flow may separate from the nozzle walls; on the
other hand, at higher values of ¥, the underexpanded
jet is characterized by a complex system of shock
waves that causes an extremely nonuniform velocity
field at the inlet to the outlet channel and considerable
total pressure losses. Broad variation of the chamber
length L should also lead to considerable differences
in the character of the process. However, as follows
from Fig. 2 relation (2) always holds whatever the
conditions.




Comparison of Calculated and Experimental Values of Pyy and (Pe)min

Pom, 2tm obs. (P¢ )min, atm. abs.
l
AP o AP in %
Ma cale. fromi experim. om, % cale, from experim. ¢ Jmin, %
4) | (8)
2 .45 38.1 36 5.5 0.197 0. 200 ‘ 1.5
2.85 31.2 29 7 0.171 0.160 \ 5.5

Measurement of the velocity fields at the exit from
the outlet channel in various typical regimes (Fig. 1)
shows that in the regionwhere the pressure P, reaches
a minimum (i.e., at Py = Py ), the nature of the field
changes sharply.

It follows that the only point where the flow con-
ditions remain unchanged is the exit section of the
outlet channel. It is natural to assume that this point
is characterized by a flow with critical parameters
when Py = Pym.

We can now write the equation relating the flow
rates through the nozzle and the exit section of the
outlet channel for the regime in which P; reaches its
minimum value:

POmF q(%) P mq(}"e ) Fe
m a =@, m-° m__t, (3)
“ 1’/-7‘_0 ¢ n(}\em) ]/_TOE

Experimental investigations of the pressure dis-
tribution along the walls of the outlet channel show
that in the exit section it is always equal to the ambient
pressure P,. Moreover, for the critical flow regime
at the channel exit q(Aqy,) = 1. Then, setting Ty = Tye,

}—DOm POm Fa — Pe ! i (4:)

£, Py Fo @p w(hen) q(he)
Here, ¢, and ¢e are the flow coefficients of thenozzle
and the outlet channel. Expression (4) corresponds
qualitatively to expression (1) obtained on the basis of
a generalization of the experimental data. Calculations
based on (4) are in good agreement with the experi-
mental data at ¢g/¢, = 0.5 irrespective of the Mg,
number and the values of f‘e and L.

Varying the parameters over a wide range leads to
considerable changes in the total pressure losses due
to important changes in the system of shock waves in
the jet. The only element to be retained in the experi-
ments is the shape of the exit section of the outlet
channel and, obviously, the coefficient ¢, is com-
pletely determined by this element. This is reinforced
by the fact that in relation to models of other shapes
(flow into a wide tube from a single supersonic nozzle
or a group of nozzles) the nature of the variation of
base pressure as a function of the pressure P, is the
same as in the basic situation considered above. In
these cases, too, the pressure Pgyy is in good agree-
ment with the calculated value (Fig. 3) at ¢e/@q = 0.5.

It should be noted that in examining flow into a
chamber or a wide tube from a group of several nozzles,
the area of the outlet channel Fo must be related to
the total area of the exit sections of all the nozzles.

The value of njjp, can be found by the method pro-
posed in [3], but with certain refinements. In [3] it is
assumed that the njjy regime develops when the ideal
boundary of the jet touches the edge of the inlet to the
outlet channel. It appears, however, that closer agree-
ment with experiment can be obtained by assuming that
the nljm regime is realized when the streamline in the
boundary layer of the jet on which the velocity is equal
to the critical value touches the edge of the inlet. The
velocity distribution in the boundary layer can be found
from the formula

L: #il.52
o kel 7B E

and the condition ny;,, corresponds to
Fo=ry Y e (6)

Since the point Py lies on the branch of the P, =
= f(Py) curve almost corresponding to the ny;m regime,
knowing njjm,. we can easily determine the minimum
chamber pressure (Pp)min Or the base pressure.
Since
lm % - &%ﬂﬁ ' 0

C
we have

POm T (}"zz) —_ (Een (}\'a) Fe
Rim N1imd ()

(Pe)min = (8)

Values of Pyp and (Pc)min determined from the rela-
tions obtained above, and their experimental values,
are presented in the table.

From the table it is clear that on average the dis-
crepancy does not exceed 5%.

The regime corresponding to (P¢)min i the most
interesting from the standpoint of applications. Using
the above relations we can also find the total pressure
losses in this regime:

Poe 1 q(h)

L 90 (9)
POm q)e Fe

It should be noted that the calculations and experi-
ments show that in the Py, regime the total pressure
losses reach a maximum and at n = nj;,, retain this
value. Calculations based on Eq. (9) agree with the
experimental data to within 15%. Thus, it is possible
to determine the characteristic quantities njjy,, Pom,
(Pe)min, and g.

633



NOTATION

F, is the clear cross section of the outlet channel;
Fgq is the area of the nozzle exit section; Fe = Fo/Fg
is the relative flow section of the outlet channel; L is
the length of the chamber; ! is the length of the outlet
channel; d, is the diameter of the nozzle exit section;
de is the diameter of the outlet channel flow section;
L= L/d, is the relative length of the chamber; =
=1/dg is the relative length of the outlet chamber:
re = de/2; l_opt is the relative length of the outlet
chamber ensuring minimum chamber pressure; rt is
the coordinate of the boundary of an ideal jet; b is the
thickness of the jet boundary layer; y is the variable
coordinate (the y-axis is directed from the boundary
of the ideal jet toward the outer edge of the boundary
layer); k is the adiabatic exponent; g = 9.81 m/sec’
is the acceleration of gravity; R is the gas constant;
acr is the critical velocity; M is the Mach number;

A =v/acr is the characteristic velocity; P is the pres-
sure; T is the temperature; p is the density; v is the
velocity; p is the total pressure loss.

— J_ / !
ﬁ(}\)=<1_—hi?11~)"2) BT q(7\)=7\kk;~i)k—l v
1

E—1 o\ %=1
22 e i
X( Er1 )
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Subscripts: 0—stagnation parameters upstream from
nozzle; a—parameters at nozzle exit; c—parameters
in chamber or wide tube (outside jet); m—parameters
in regime corresponding to minimum P,; n—param-
eters of ambient medium; e—parameters in exit sec-
tion of outlet channel; t—parameters at boundary of
ideal jet.
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